Opening Wedge High Tibial Osteotomy

Complete system for minimally-invasive surgery

OTIS-C-PLUS®
Low profile locking plate

100 % β-TCP
Bioabsorbable wedge

+ complete instrumentation set
Bioabsorbable synthetic wedge

SBM, which boasts 20 years of experience in its field, was the first company (as early as 1996) to manufacture synthetic wedges for High Tibial Osteotomy (HTO) by metaphyseal addition. Manufactured in Biosorb (100% β Tricalcium Phosphate), the OTIS® line of osteotomy wedges is designed to meet different porosity and size needs which makes it the most complete line of its kind available to this day.

Adaptability

Anatomically shaped 1-15

OTIS® implants, which combine a flat lower surface with an angulated upper surface, are designed to fit into the tibial osteotomy plane.

Several porosities

OTIS® implants have been adapted in terms of porosity to fit to any need: 30% porosity for high mechanical resistance, 50% porosity for quick resorption.

Perfect precision

A complete set of 10 different wedge heights ranging from 6 to 15 mm in 1 mm increments, offering a precision of correction equal to 1°.

Ensuring results

Bioactivity 1-15

Biosorb closely resembles the mineral phase of bone, which enables a genuine chemical bond with the bone tissue without fibrous encapsulation nor inflammatory reaction.

Osteointegration 1-15

Complete control of the macroporosity guides bone cell penetration and improves bone graft integration with the bone tissue.

Resorption 1-15

OTIS® wedges are bioabsorbable: the implants are thus replaced by healthy new-formed bone once the cellular resorption process is complete.

Wide choice of corrections

OTIS®

30% porosity
Mechanical strength
(associated to a plate or staples)

50% porosity
Accelerated resorption
(must be associated to a locking plate).

![Wide choice of corrections diagram]
Compressive locking plate

The OTIS-C-PLUS® plate is made of biocompatible stainless steel, it is anatomically shaped and low profile which makes it perfect for minimally-invasive surgical approaches. Its locking system ensures graft compression to guarantee optimal tibial stabilization as well as rapid weight-bearing.

Safe and fast placement

Anatomically shaped
Specially designed for HTO stabilization, OTIS-C-PLUS® fits to the patient’s anatomy and does not need to be pre-formed in most cases.

Resistant
Biocompatible stainless steel plates are very resistant and can be easily removed (unlike titanium alloy plates).

Lockable
The twelve lengths of self-tapping locking screws are pre-oriented, which provides the ability to adapt the surgery (mono or bicortical anchorage) and to reduce surgical time.

Quicker recovery

Compression
OTIS-C-PLUS® is a compression plate: graft compression promotes its absorption and provides stability.

Almost immediate weight-bearing
The rigidity of the plate is provided by its shape: the more rigid the osteosynthesis, the quicker weight-bearing can occur. Full weight-bearing is possible after 45 days.

Limited scars
The plate is low-profile (30% shorter than standard osteosynthesis, only 3 mm thick), which makes it perfect for a genuine minimally-invasive surgical approach.

An optimized design

Proximal screws
Perpendicular to the plate

Central fold
Anatomically shaped
Avoids twisting the plate

Distal screws
oriented downwards
Ensure compression

Twelve lengths of ø 6.5 mm self-tapping screws, without counter nuts (length in mm)
Surgical technique

Two models of OTIS-C-PLUS® plates are available: right and left knee. To ensure proper positioning of the wedge and the plate, it is important to adhere to the following procedure (right knee in this example).

CAUTION: Do not insert the screws through the wedge to prevent graft damage.

Planning
Pre-operative confirmation of the correction required can be done in various ways:
- The method using a cord allows for visualization of the lateral to medial mechanical axis.
- A protractor is used to measure the angle per-operatively.
Step 1

Medial metaphyseal incision

The medial metaphyseal incision has three reference points: the medial border of the tibial metaphysis, the posterior border of the patellar ligament, and the joint line.

The incision is short, 5 to 6 cm, longitudinal and equidistant from the patellar ligament and the posterior border of the tibia, just under the joint line. After incision through the subcutaneous tissue, the medial border of the patellar ligament and the deep tissue under the ligaments are dissected.

The internal fibroligamentous plane is incised longitudinally and progressively lifted from the tibial metaphyseal surface to allow the rugine to slide behind the medial border, and a right angle retractor to be inserted to protect the popliteal fossa.

To limit the risk of partition of the lateral tibial plateau, the opening can be achieved with Lambotte osteotomes.

Step 2

Trial implant selection

The instrumentation set offers a range of 10 metallic trial implants with heights from 6 to 15 mm corresponding to the definitive implants.

Step 3

Implant from H 8 to 15 mm: (a)

Directly screw the handle on the trial implant.

Implant H 6 or H 7: (b)

Grab the one-piece trial implant and insert it directly up to the osteotomy incision.
Step 4

Impaction
Impact the metallic trial implant within the osteotomy incision, until it is level with the postero-medial cortical bone.
Control the correction obtained by fluoroscopy.

Step 5

Retrieval
Retrieve the metallic implant by using the slotted hammer.

Step 6

Wedge positioning
Replace the metallic trial implant by the definitive implant. Carefully position the graft by hand in the osteotomy incision (e.g. using a gauze), an arrow located on the top surface helps position the implant properly.

Note: if the edges of the implant are damaged during impaction, this will not affect the mechanical strength of the implant.

Step 7

Impaction
The instrumentation set provides you with an impactor and its adapted tip specially designed to adjust the implant in the osteotomy incision.
Screw the polyoxymethylene (POM) tip on the impactor handle: the POM is polymer that acts as a shock absorber thus reducing the risk of fracture during final implant positioning.
Step 8

Temporary screws
If needed, pre-form the plate by using the plate twister (screw in the drill guides to avoid thread damage).
Place the OTIS-C-PLUS® plate and drill with the Ø 3 mm lock drill through the holes meant for the temporary screws, then screw in the temporary screws.

Step 9

Posterior epiphysseal orifice (hole n° 1)
Twelve lengths are available: from 27 to 70 mm with increments of 3 to 5 mm for optimal adaptation.
Drill through the Ø 3,5 mm guide with the Ø 3,5 mm drill to the appropriate length then withdraw the guide.

Step 10

1st screw (hole n°1)
Use the countersink bit to ease the insertion of the screw.
Measure the thread length using the depth gauge. Insert a screw with a length equal to or immediately less than the measured length.
In order to lock the plate, screw until part of the screw comes level with the plate (see side view of the plate - page 4).

Step 11

2nd screw (hole n°2)
Drill through the Ø 3.5 mm drill guide using the Ø 3.5 mm drill. Use the countersink bit to ease the insertion of the screw.
Measure the thread length using the depth gauge. Insert a screw with a length equal to or immediately less than the measured length.
In order to lock the plate, screw until part of the screw comes level with the plate.
Screw the drill Ø 4.5 mm guide on hole n°3 for the third screw.
Step 12

3rd screw (hole n°3)
Drill through the drill guide with Ø 4.5 mm drill bit. Then use the countersink bit to ease the insertion of the screw.
Measure the thread length using the depth gauge.
Insert a screw with a length equal to or immediately less than the measured length.
In order to lock the plate, screw until part of the screw comes level with the plate.

Step 13

4th screw (hole n°4)
Remove the temporary screws with the screwdriver.
Drill through the drill guide with the Ø 4.5 mm drill bit. Use the countersink bit to ease the insertion of the screw.
Measure the thread length using the depth gauge.
Insert a screw with a length equal to or immediately less than the measured length.
In order to lock the plate, screw until part of the screw comes level with the plate.
Double-check that each screw is properly locked in.

OTIS-C-PLUS® placement

Follow-up
When a locking plate such as the OTIS-C-PLUS® plate is used, early weight-bearing is possible with the help of two crutches for a period of 6 weeks. Hospitalization lasts 3 to 4 days, weight-bearing is allowed after approximately 45 days. Thigh/knee splints offer an undeniable analgesic effect.

Radiological integration of the OTIS® implant starts as early as the sixth month on both surfaces; the border between the metaphyseal bone and the implant becomes indistinct and the graft loses its geometric appearance.
Clinical examples

Opening Wedge High Tibial Osteotomy, right knee.
Courtesy of Doctor Jean-Claude PANISSET, Clinique des cèdres, Grenoble, France.

Opening Wedge High Tibial Osteotomy, left knee.
Courtesy of Professor Dominique SARAGAGLIA, CHU Sud Grenoble, France.
Instrumentation

Instruments

- **Drill guides** Ø 3.5 and Ø 4.5 mm
- **Drill for temporary screw** Ø 3 mm
- **L 195 mm drills** Ø 3.5 and Ø 4.5 mm
- **OTIS metallic trial implants**
 - Heights 8, 9, 10, 11, 12, 13, 14, 15 mm
- **Handle for OTIS metallic trial implants** (x2)
- **OTIS one-piece metallic trial implant**
 - Heigths 6 and 7 mm
- **Round headed temporary screw** (x2)
- **Countersink bit**
- **Depth gauge**
- **Impactor (body and tip)**
- **Plate twister**
- **Slotted hammer**
- **Hexagonal screwdriver Ø 3.5 mm**
Ordering Information

OTIS® osteotomy wedges

<table>
<thead>
<tr>
<th>Codes</th>
<th>Designation</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P822365222</td>
<td>OTIS implant - height 6 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365224</td>
<td>OTIS implant - height 7 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365226</td>
<td>OTIS implant - height 8 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365228</td>
<td>OTIS implant - height 9 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365234</td>
<td>OTIS implant - height 12 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365236</td>
<td>OTIS implant - height 13 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365238</td>
<td>OTIS implant - height 14 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822365240</td>
<td>OTIS implant - height 15 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

OTIS® 50 osteotomy wedges

<table>
<thead>
<tr>
<th>Codes</th>
<th>Designation</th>
<th>Pack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P822667222</td>
<td>OTIS 50 implant - height 6 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667224</td>
<td>OTIS 50 implant - height 7 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667226</td>
<td>OTIS 50 implant - height 8 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667228</td>
<td>OTIS 50 implant - height 9 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667230</td>
<td>OTIS 50 implant - height 10 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667232</td>
<td>OTIS 50 implant - height 11 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667234</td>
<td>OTIS 50 implant - height 12 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667236</td>
<td>OTIS 50 implant - height 13 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667238</td>
<td>OTIS 50 implant - height 14 mm</td>
<td>1</td>
</tr>
<tr>
<td>P822667240</td>
<td>OTIS 50 implant - height 15 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

OTIS-C-PLUS® plates and screws

<table>
<thead>
<tr>
<th>Codes</th>
<th>Designation</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVO9067522</td>
<td>OTIS-C-PLUS right plate</td>
<td>1</td>
</tr>
<tr>
<td>EVO9067722</td>
<td>OTIS-C-PLUS left plate</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066027</td>
<td>OTIS screw - length 27 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066030</td>
<td>OTIS screw - length 30 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066033</td>
<td>OTIS screw - length 33 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066036</td>
<td>OTIS screw - length 36 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066039</td>
<td>OTIS screw - length 39 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066042</td>
<td>OTIS screw - length 42 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066045</td>
<td>OTIS screw - length 45 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066050</td>
<td>OTIS screw - length 50 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066055</td>
<td>OTIS screw - length 55 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066060</td>
<td>OTIS screw - length 60 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066065</td>
<td>OTIS screw - length 65 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9066070</td>
<td>OTIS screw - length 70 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Complete instrumentation for High Tibial Osteotomy

<table>
<thead>
<tr>
<th>Codes</th>
<th>Designation</th>
<th>In the basket</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVO9035100</td>
<td>OTIS-C ø 3 mm drill for temporary screw</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069A45</td>
<td>OTIS-C ø 3,5 mm round-headed temporary screw</td>
<td>2</td>
</tr>
<tr>
<td>EVO9069622</td>
<td>OTIS-C plate twister</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069428</td>
<td>OTIS-C ø 3,5 mm drill guide</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069430</td>
<td>OTIS-C ø 4,5 mm drill guide</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069432</td>
<td>OTIS-C ø 3,5 mm drill - length 195 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069434</td>
<td>OTIS-C ø 4,5 mm drill - length 195 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO9040203</td>
<td>OTIS-C ø 3,5 mm hexagonal screwdriver</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069436</td>
<td>OTIS-C countersink bit</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069438</td>
<td>OTIS-C depth gauge</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069444</td>
<td>OTIS impactor body</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069446</td>
<td>OTIS impactor tip</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH06</td>
<td>OTIS one-piece metallic trial implant - height 6 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH07</td>
<td>OTIS one-piece metallic trial implant - height 7 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH08</td>
<td>OTIS metallic trial implant - height 8 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH09</td>
<td>OTIS metallic trial implant - height 9 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH10</td>
<td>OTIS metallic trial implant - height 10 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH11</td>
<td>OTIS metallic trial implant - height 11 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH12</td>
<td>OTIS metallic trial implant - height 12 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH13</td>
<td>OTIS metallic trial implant - height 13 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH14</td>
<td>OTIS metallic trial implant - height 14 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAH15</td>
<td>OTIS metallic trial implant - height 15 mm</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FAMAN</td>
<td>Handles for OTIS metallic trial implants</td>
<td>2</td>
</tr>
<tr>
<td>EVO90FAMAR</td>
<td>Slotted hammer for OTIS metallic trial implants</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FA700</td>
<td>OTIS-C-PLUS stainless steel basket with silicone holders</td>
<td>1</td>
</tr>
<tr>
<td>EVO90FA800</td>
<td>OTIS-C-PLUS complete instrumentation set</td>
<td>1</td>
</tr>
</tbody>
</table>

Extraction kit for OTIS plate and screws

<table>
<thead>
<tr>
<th>Codes</th>
<th>Designation</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVO9069439</td>
<td>Screwdriver for OTIS screws extraction</td>
<td>1</td>
</tr>
<tr>
<td>EVO9069765</td>
<td>Trephine for OTIS screw extraction</td>
<td>1</td>
</tr>
</tbody>
</table>
Bibliography

1 Synthèse et caractérisation de biomatériaux à base de Phosphates de Calcium,
CLEMENT D.

2 Biocompatibilité, stabilité mécanique et dégradation des compacts de Phosphate Tricalcique : Étude d’une série continue de 16 cas entre 2 et 4 ans de recul,
BONNEVIALLE P., CLEMENT D., CHALAL B., MANSAT M.

3 Utilisation du Phosphate Tricalcique dans les OTV par addition interne,
LASCAR T., FAVARD L., BURDIN P., TRAORE O.

4 Intérêt du Phosphate Tricalcique β en chirurgie orthopédique et traumatologique : à propos de 56 cas,
GALOIS L., MAINARD D. et collab.

5 Comblement des pertes de substance osseuse par le Phosphate Tricalcique β en traumatologie,
GALOIS L., MAINARD D., COHEN P., PFEFFER F., TRAVERSARI R., DELAGOUTTE J-P.

6 23 cas d’utilisation du Phosphate Tricalcique pour le comblement des pertes de substance osseuse au pied,
GALOIS L., MAINARD D., COHEN P., DELAGOUTTE J-P.

7 Ostéotomie tibiale de valgisation par addition médiale d’un coin de phosphate tricalcique,
BONNEVIALLE P., ABID A., MANSAT P., VERHAEGHE L., CLEMENT D., MANSAT M.

8 β-Tricalcium Phosphate ceramic as a bone substitute in orthopaedic surgery,
GALOIS L., MAINARD D., DELAGOUTTE J-P.

9 L’ostéotomie de valgisation assitée par ordinateur dans le genu varum arthrosique : résultats radiologiques d’une étude cas-témoin de 56 cas,
SARAGAGLIA D., PRADEL P., PICARD F.

10 Valgisation tibiale par ouverture médiale utilisant un coin de céramique de phosphate tricalcique. A propos de 70 cas revus avec un recul moyen de 18 mois,
DEHOUX E., MADI K., FOURATI E., MENSA C., SEGAL P.

11 Computer-assisted high tibial and double-level osteotomies for genu varum deformity,
SARAGAGLIA D., ROBERTS J., RUBENS-DUVAL B.

12 Resorbability of rigid beta-tricalcium phosphate wedges in open-wedge high tibial osteotomy. A retrospective radiological study,
The Knee, 15, 201-205, 2008.

13 Outcome of opening wedge high tibial osteotomy augmented with a Biosorb wedge and fixed with a plate and screws in 124 patients with a mean of ten years follow-up,
SARAGAGLIA D., BLAYSAT M., INMAN D, MERCIER N.
Int Orthop. 2010. DOI 10.1007

14 Results of forty two computer-assisted double level osteotomies for severe genu varum deformity
SARAGAGLIA D., BLAYSAT M, MERCIER N., GRIMALDI M.

15 Gonarthrose femoro-tibiale sur genu varum : place de l’ostéotomie tibiale par addition médiale d’un coin de phosphate tricalcique. L’expérience du service à propos de 80 cas
BELBACHIR B., SERHANE L., AZZOUZ S., LAZIB N., BENBRAHIM N., CHAABANA S., TALBI Y., HAMOULHADJ M., MOUSSAOUI F., MERABET S., OUAIMED A.
Revue algérienne de chirurgie orthopédique, n°1 2012.

Speak to your local Sales Specialist for further information or contact us using the details below:

T: 01443 719 555
E: info@hospitalinnovations.co.uk

www.hospitalinnovations.com